

Foundations of
High-Performance React
Applications

Thomas Hintz

This work is licensed under a Creative Commons

Attribution 4.0 International License

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Contents

Preface . i

Acknowledgments . iii

Introduction . 1

Components of React . 3

Markup in JavaScript: JSX 5

Getting Ready to Render with createElement 10

Render: Putting Elements on the Screen 13

Reconciliation, or How React Diffs 16

Fibers: Splitting up Render 26

Putting it all together . 28

Conclusion . 30

Preface
Welcome to Foundations of High-Performance React Appli-
cations where we build our own simplified version of React.

We’ll use our React to gain an understanding of the real React

and how to build high-performance applications with it.

This book is based on the first chapter of the book High-
Performance React. If you enjoy this book and you want to

learn more practical ways to utilize the foundations we’ll

learn here and get a more detailed blueprint for creating high

performance React applications, then be sure to check out

High-Performance React.

This book is not intended to be an introduction to React or

JavaScript. While it might be useful to beginners, this book

assumes familiarity with both JavaScript and React.

And while this book only specifically addresses React-DOM,

the foundations apply equally to React-Native and other React

implementations because they are all based on the same core

React library and algorithms.

The code in this book is clear and simple so as to best

communicate the algorithms we’ll be exploring. It is not

intended to be used in production, but it is functional. I think

Preface ii

you’ll likely find it useful to follow along by writing the code

yourself. It will help you better understand how it works, and

even more critically, it will allow you to play with it and test

how the algorithms work with your own examples.

Even if you don’t write out the code yourself and, instead,

read through this book more like a novel, I believe the

fundamentals will still stick with you and provide value in

your React programs-to-come.

I’m very excited to take you on this journey with me and,

so, now it’s time to learn what lies at the very foundation of

React.

Acknowledgments
First, I’d like to thankmy partner Laura for always supporting

me in whatever endeavors I embark upon, whether they’re

new, challenging, or scary. This book andmywork with React

wouldn’t have taken place if it weren’t for her support and

strength.

Second, I would like to thank my friend Timothy Licata for

providing invaluable feedback on earlier versions and always

pushing me to explore new ways of using Emacs, such as

writing this book.

And last, I would like to thank the wider JavaScript and React

community for providing many years of work to build upon,

specifically Rodrigo Pombo’s “Build Your Own React” for

being the inspiration for a lot of this book’s content.

Introduction
When I first began to learn how to bake bread, a recipe told

me what to do. It listed some ingredients, told me how to

combine them, and prescribed times of rest. It gave me an

oven temperature and a period of wait. It gave me mediocre

bread of wildly varying quality. I tried different recipes, but

the result was always the same.

Understanding: that’s what I was missing. The bread I make

is now consistently good. The recipes I use are simpler and

only give ratios and general recommendations for rests and

waits. So, why does the bread now turn out better?

Before it is baked, bread is a living organism. So, the way

it grows, develops, and flavors depends on what you feed it,

how you feed it, how you massage it, and how you care for it.

If you have it grow and ferment with more yeast at a higher

temperature, it overdevelops, producing too much alcohol. If

you give it too much time, acidity will take over the flavor.

The recipes I used initially were missing a critical ingredient:

the rising temperature.

But unlike other ingredients, temperature is hard for the

home cook to control. And recipes don’t say exactly at which

Introduction 2

temperature to grow the bread. My initial recipes just silently

made assumptions about the temperature, which rarely

worked. This means the only way to consistently make good

bread is to have an understanding of how bread develops so

that you can adjust the other ingredients to complement the

temperature. Now the bread can tell me what to do.

While React isn’t technically a living organism that can tell us

what to do, it is, in its whole, a complex, abstract entity. We

could learn basic recipes for how to write high-performance

React code, but they wouldn’t apply in all cases. And as React

and things under it change, our recipes would fall out-of-date.

So, like bread, to produce consistently good results we need

to understand how React does what it does.

Components of React
The primary elements that make up any React program are its

components. A component in React maintains local state and

“renders” output to eventually be included in the browser’s

DOM. A tree of components is then created whenever a

component outputs other components.

So, conceptually, React’s core algorithm is very simple: it

starts by walking a tree of components and building up a tree

of their output. Then it compares that tree to the tree currently

in the browser’s DOM to find any differences between them.

When it finds differences it updates the browser’s DOM to

match its internal tree.

But what does that actually look like? If your app is janky

does that explanation point you towards what is wrong?

No. It might make you wonder if maybe it is too expensive

to re-render the tree or if maybe the diffing React does is

slow, but you won’t really know. When I was initially testing

out different bread recipes I had guesses at why it wasn’t

working, but I didn’t really figure it out until I had a deeper

understanding of how making bread worked. It’s time we

build up our understanding of how React works so that we

can start to answer our questions with solid answers.

Components of React 4

React is centered on the render method. The render method

is what walks our trees, diffs them with the browser’s DOM

tree, and updates the DOM as needed. But before we can look

at the render method we have to understand its input. The

input comes from createElement. While createElement itself is

unlikely to be a bottleneck, it’s good to understand how it

works so that we can have a complete picture of the entire

process. The more black-boxes we have in our mental model

the harder it will be for us to diagnose performance problems.

Markup in JavaScript:
JSX
createElement, however, takes as input something that is prob-

ably not familiar to us since we usually work in JSX, which

is the last element of the chain in this puzzle and the first

step in solving it. While not strictly a part of React, it is

almost universally used with it. And if we understand it,

createElementwill then be less of a mystery since we’ll be able

to connect all the dots.

JSX is not valid HTML or JavaScript but its own language com-

piled by a compiler, like Babel. The output of that compilation

is valid JavaScript that represents the original markup.

Before JSX or similar compilers, the typical way of injecting

HTML into the DOM was via directly utilizing the browser’s

DOM APIs or by setting innerHTML. This was very cumber-

some. The code’s structure did not match the structure of

the HTML that it output which made it hard to quickly

understand what the output of a piece of code would be.

So naturally programmers have been endlessly searching for

better ways to mix HTML with JavaScript.

Markup in JavaScript: JSX 6

And this brings us to JSX. It is nothing new, nothing compli-

cated. Forms of it have been made and used long before React

adopted it. Now let’s see if we can discover JSX for ourselves.

To start with, we need to create a data-structure – let’s call it

JavaScript Markup (JSM) – that both represents a DOM tree

and can also be used to insert one into the browser’s DOM.

And to do that we need to understand what a tree of DOM

nodes is constructed of. What parts do you see here?

<div class="header">
<h1>Hello</h1>
<input type="submit" disabled />

</div>

I see three parts: the name of the tag, the tag’s properties, and

its children.

Name: ‘div’, ‘h1’, ‘input’

Props: ‘class’, ‘type’, ‘disabled’

Children: <h1>, <input>, Hello

Now how could we recreate that in JavaScript?

In JavaScript, we store lists of things in arrays, and key/value

properties in objects. Luckily for us, JavaScript even gives us

literal syntax for both so we can easily make a compact DOM

tree with our own notation.

This is what I’m thinking:

Markup in JavaScript: JSX 7

JSM - JavaScript Markup

['div', { 'className': 'header' },
[['h1', {}, ['Hello']],
['input', { 'type': 'submit', 'disabled': 'disabled' },
[]]

]
]

As you can see, we have a clear mapping from our notation,

JSM, to the original HTML. Our tree is made up of three

element arrays. The first item in the array is the tag, the

second is an object containing the tag’s properties, and the

third is an array of its children which are all made up of the

same three element arrays.

The truth is, if you stare at it long enough, although the

mapping is clear, how much fun would it be to read and write

that on a consistent basis? I can assure you, it is not fun. But

it has the advantage of being easy to insert into the DOM. All

you need to do is write a simple recursive function that ingests

our data structure and updates the DOM accordingly. We’ll

get back to that.

So now we have a way to represent a tree of nodes and we

(theoretically) have a way to get those nodes into the DOM.

But if we are being honest with ourselves, while functional, it

isn’t a pretty notation nor easy to work with.

And this is where our object of study enters the scene. JSX is

just a notation that a compiler takes as input and outputs in

Markup in JavaScript: JSX 8

its place a tree of nodes nearly identical to the notation we

came up with! And if you look back to our notation you can

see that you can easily embed in a node arbitrary JavaScript

expressions wherever you want. As you may have realized,

that’s exactly what the JSX compiler does when it sees curly

braces!

There are three main differences between JSM and the real

output of the JSX compiler: it uses objects instead of arrays, it

inserts calls to React.createElement on children, and spreads

the children instead of containing them in an array. Here is

what real JSX compiler output looks like:

React.createElement(
'div',
{ className: 'header' },
React.createElement('h1', {}, 'Hello'),
React.createElement(

'input',
{ type: 'submit', 'disabled': 'disabled' })

);

As you can see, it is very similar to our JSM data-structure

and, for the purposes of this book, we’ll use JSM, as it’s

a bit easier to work with. A JSX compiler also does some

validation and escapes input to prevent cross-site scripting

attacks. In practice though, it would behave the same in our

areas of study and we’ll keep things simple by leaving out

those aspects of the JSX compiler.

So now that we’ve worked through JSX we’re ready to tackle

Markup in JavaScript: JSX 9

createElement, the next item on our way to building our own

React.

Getting Ready to
Render with
createElement
React’s render expects to consume a tree of element objects

in a specific, uniform format. createElement is the method by

which we achieve that objective. createElement will take as

input JSM and output a tree of objects compatible with render.

React expects nodes defined as JavaScript objects that look

like this:

{
type: NODE_TYPE,
props: {

propA: VALUE,
propB: VALUE,
...
children: STRING | ARRAY

}
}

That is, an object with two properties: type and props. The

props property contains all the properties of the node. The

node’s children are also considered part of its properties. The

Getting Ready to Render with createElement 11

full version of React’s createElement includes more properties,

but they are not relevant to our study here.

function createElement(node) {
// if array (our representation of an element)
if (Array.isArray(node)) {

const [tag, props, children] = node;
return {

type: tag,
props: {

...props,
children: children.map(createElement)

}
};

}

// primitives like text or number
return {

type: 'TEXT',
props: {

nodeValue: node,
children: []

}
};

}

Our createElement has two main parts: complex elements and

primitive elements. The first part tests whether node is a

complex node (specified by an array) and then generates an

element object based on the input node. It recursively calls

createElement to generate an array of children elements. If

the node is not complex then we generate an element of

type ‘TEXT’ which we use for all primitives, like strings and

numbers.We call the output of createElement a tree of elements

(surprise).

Getting Ready to Render with createElement 12

That’s it. Now we have everything we need to actually begin

the process of rendering our tree to the DOM!

Render: Putting
Elements on the
Screen
There are now only two major puzzles remaining in our quest

for our own React. The next piece is render. How do we go

from our JSM tree of nodes to actually displaying something

on screen? We do this by exploring the render method.

The signature for our rendermethod should be familiar to you:

function render(element, container)

This is the same signature as that of React itself. We begin by

just focusing on the initial render. In pseudocode it looks like

this:

Render: Putting Elements on the Screen 14

function render(element, container) {
const domElement = createDOMElement(element);
setProps(element, domElement);
renderChildren(element, domElement);
container.appendChild(domElement);

Our DOM element is created first. Then we set the properties,

render the children elements, and finally append the whole

tree to the container.

Now that we have an idea of what to build we’ll work

on expanding the pseudocode until we have our own fully

functional rendermethod by using the same general algorithm

that React uses. In our first pass we’ll focus on the initial

render and ignore reconciliation.

Reconciliation is basically React’s “diffing” algo-

rithm. We’ll be exploring it after we work out the

initial render.

Render: Putting Elements on the Screen 15

function render(element, container) {
const { type, props } = element;

// create the DOM element
const domElement = type === 'TEXT' ?

document.createTextNode(props.nodeValue) :
document.createElement(type);

// set its properties
Object.keys(props)

.filter((key) => key !== 'children')

.forEach((key) => domElement[key] = props[key]);

// render its children
props.children.forEach((child) =>

render(child, domElement));

// add our tree to the DOM!
container.appendChild(domElement);

}

The rendermethod starts by creating the DOM element. Then

we need to set its properties. To do this we first need to filter

out the children property and then we simply loop over the

keys, setting each property directly. Following that, we render

each of the children by looping over them and recursively

calling render on each child with the container set to the

current DOM element (which is each child’s parent).

Now we can go all the way from our JSX-like notation to a

rendered tree in the browser’s DOM! But so far we can only

add things to our tree. To be able to remove and modify the

tree we need one more part: reconciliation.

Reconciliation, or How
React Diffs
This is a tale of two trees, the two trees that people most

often talk about when talking about React’s “secret sauce”:

the virtual DOM and the browser’s DOM tree. This idea is

what originally set React apart. React’s reconciliation is what

allows you to program declaratively. Reconciliation is what

makes it so we no longer have to manually update and modify

the DOM whenever our own internal state changes. In a lot

of ways, it is what makes React, React.

Conceptually, the way this works is that React generates a

new element tree for every render and compares the newly

generated tree to the tree generated on the previous render.

Where it finds differences between the trees it knows to

mutate the DOM state. This is the “tree diffing” algorithm.

Unfortunately, those researching tree diffing in Computer

Science have not yet produced a generic algorithm with

sufficient performance for use in something like React, as the

current best algorithm still runs in O(n³).

Since an O(n³) algorithm isn’t going to cut it in the real-world,

the creators of React instead use a set of heuristics to deter-

https://grfia.dlsi.ua.es/ml/algorithms/references/editsurvey_bille.pdf

Reconciliation, or How React Diffs 17

mine what parts of the tree have changed. Understanding

the heuristics currently in use and how the React tree diffing

algorithm works in general can help immensely in detecting

and fixing React performance bottlenecks. And beyond that

it can help one’s understanding of some of React’s quirks and

usage. Even though this algorithm is internal to React and can

be changed anytime, its details have leaked out in some ways

and, overall, are unlikely to change in major ways without

larger changes to React itself.

According to the React documentation the diffing algorithm

is O(n) and is based on two major components:

• Elements of differing types will yield different trees

• You can hint at tree changes with the key prop.

In this section we’ll focus on the first part: differing types.

In this book we won’t be covering keys in depth,

but you’ll see why it’s very important to follow

the guidance from React’s documentation that

keys are stable, predictable, and unique.

The approach we’ll take here is to integrate the heuristics

that React uses into our render method. Our implementation

will be very similar to how React itself does it and we’ll

discuss React’s actual implementation later when we talk

about Fibers.

https://reactjs.org/docs/reconciliation.html

Reconciliation, or How React Diffs 18

Before we get into the code changes that implement the

heuristics, it is important to remember that React only looks

at an element’s type, existence, and key. It does not do any

other diffing. It does not diff props. It does not diff sub-trees

of modified parents.

While keeping that in mind, here is an overview of the

algorithmwe’ll be implementing in the rendermethod. element

is the element from the current tree and prevElement is the

corresponding element in the tree from the previous render.

if (!element && prevElement)
// delete dom element

else if (element && !prevElement)
// add new dom element, render children

else if (element.type === prevElement.type)
// update dom element, render children

else if (element.type !== prevElement.type)
// replace dom element, render children

Notice that in every case, except deletion, we still call render

on the element’s children. And while it’s possible that the

children will have their associated DOM elements reused,

their render methods will still be invoked.

Now, to get started with our render method we must make

some modifications to our previous render method. First, we

need to be able to store and retrieve the previous render tree.

Then, we need to add code to compare parts of the tree to

decide if we can reuse DOM elements from the previous

render tree. And last, we need to return a tree of elements

Reconciliation, or How React Diffs 19

that can be used in the next render as a comparison and

to reference the DOM elements that we create. These new

element objects will have the same structure as our current

elements but we’ll add two new properties: domElement and

parent. domElement is the DOM element associated with our

synthetic element and parent is a reference to the parent DOM

element.

Here we begin by adding a global object that will store our

last render tree, keyed by the container. container refers to the

browser’s DOM element that will be the parent for all of the

React derived DOM elements. This parent DOM element can

only be used to render one tree of elements at a time, so it

works well to use it as a key for renderTrees.

const renderTrees = {};
function render(element, container) {

const tree =
render_internal(element, container,

renderTrees[container]);
// render complete, store the updated tree
renderTrees[container] = tree;

}

As you can see, the change we made is to move the core of

our algorithm into a new function called render_internal and

pass in the result of our last render to render_internal.

Now that we have stored our last render tree, we can go ahead

and update our render method with the heuristics for reusing

the DOM elements. We name it render_internal because it is

Reconciliation, or How React Diffs 20

what controls the rendering, but it now takes an additional

argument: the prevElement. prevElement is a reference to the

corresponding element from the previous render and contains

a reference to its associated DOM element and parent DOM

element. If it’s the first render or if we are rendering a new

node or branch of the tree, then prevElement will be undefined.

If, however, element is undefined and prevElement is defined,

then we know we need to delete a node that previously

existed.

function render_internal(element, container, prevElement) {
let domElement, children;
if (!element && prevElement) {

removeDOMElement(prevElement);
return;

} else if (element && !prevElement) {
domElement = createDOMElement(element);

} else if (element.type === prevElement.type) {
domElement = prevElement.domElement;

} else { // types don't match
removeDOMElement(prevElement);
domElement = createDOMElement(element);

}
setDOMProps(element, domElement, prevElement);
children =

renderChildren(element, domElement, prevElement);

if (!prevElement ||
domElement !== prevElement.domElement) {
container.appendChild(domElement);

}

return {
domElement: domElement,
parent: container,
type: element.type,

Reconciliation, or How React Diffs 21

props: {
...element.props,
children: children

}
};

}

The only time we shouldn’t set DOM properties on our

element and render its children is when we are deleting an

existing DOM element. We use this observation to group the

calls for setDOMProps and renderChildren. Choosing when to

append a new DOM element to the container is also part of

the heuristics. If we can reuse an existing DOM element, then

we do this, but if the element type has changed or if there was

no corresponding existing DOM element, then, and only then,

do we append a new DOM element. This ensures the actual

DOM tree isn’t being replaced every time we render, only the

elements that change are being replaced.

In the real React, when a new DOM element is appended

to the DOM tree, React would invoke componentDidMount or

schedule useEffect.

Next up we’ll go through all the auxiliary methods that

complete the implementation.

Removing a DOM element is straightforward; we just

removeChild on the parent element. Before removing the

element, React would invoke componentWillUnmount and

schedule the cleanup function for useEffect.

Reconciliation, or How React Diffs 22

function removeDOMElement(prevElement) {
prevElement.parent.removeChild(prevElement.domElement);

}

In creating a new DOM element, we just need to branch if

we are creating a text element since the browser API differs

slightly. We also populate the text element’s value, as the API

requires the first argument to be specified even though later

on when we set props we’ll set it again. This is where React

would invoke componentWillMount or schedule useEffect.

function createDOMElement(element) {
return element.type === 'TEXT' ?

document.createTextNode(element.props.nodeValue) :
document.createElement(element.type);

}

To set the props on an element, we first clear all the existing

props and then loop through the current props, setting them

accordingly. Of course, we filter out the children prop since

we use that elsewhere and it isn’t intended to be set directly.

Reconciliation, or How React Diffs 23

function setDOMProps(element, domElement, prevElement) {
if (prevElement) {

Object.keys(prevElement.props)
.filter((key) => key !== 'children')
.forEach((key) => {

domElement[key] = ''; // clear prop
});

}
Object.keys(element.props)

.filter((key) => key !== 'children')

.forEach((key) => {
domElement[key] = element.props[key];

});
}

React is more intelligent about only updating

or removing props that need to be updated or

removed.

This algorithm for setting props does not cor-

rectly handle events, which must be treated spe-

cially. For this exercise, that detail is not impor-

tant and we leave it out for simplicity.

For rendering children we use two loops. The first loop re-

moves any elements that are no longer being used. This would

happenwhen the number of children is decreased. The second

loop starts at the first child and then iterates through all of

the children of the parent element, calling render_internal on

each child. When render_internal is called, the corresponding

Reconciliation, or How React Diffs 24

previous element in that position is passed to render_internal,

or undefined if there is no corresponding element, like when

the list of children has grown.

function renderChildren(element, domElement,
prevElement = { props: { children: [] }}) {

const elementLen = element.props.children.length;
const prevElementLen = prevElement.props.children.length;
// remove now unused elements
for (let i = elementLen; i < prevElementLen - elementLen;

i++) {
removeDOMElement(element.props.children[i]);

}
// render existing and new elements
return element.props.children.map((child, i) => {

const prevChild = i < prevElementLen ?
prevElement.props.children[i] : undefined;

return render_internal(child, domElement, prevChild);
});

}

It’s very important to understand the algorithm used here be-

cause this is essentially what happens in React when incorrect

keys are used, like using a list index for a key. And this is why

keys are so critical to high performance (and correct) React

code. For example, in our algorithm here, if you removed an

item from the front of the list, you may cause every element

in the list to be created anew in the DOM if the types no

longer match up. In this book we won’t be incorporating

keys, but it’s actually only a minor difference in determining

which child gets paired with which prevChild. Otherwise this

is effectively the same algorithm React uses when rendering

lists of children.

Reconciliation, or How React Diffs 25

Example of renderChildren 2nd loop when the 1st element has been removed.
In this case, the trees for all of the children will be torn down and rebuilt.

i child Type prevChild Type

0 span div

1 input span

2 - input

There are a few things to note here. First, it is important to

pay attention to when React will be removing a DOM element

from the tree and adding a new one, as this is when the related

lifecycle events, or hooks, are invoked. And invoking those

lifecycle methods, or hooks, and the whole process of tearing

down and building up a component is expensive. So again, if

you use a bad key, like the algorithm here simulates, you’ll

be hitting a major performance bottleneck since React will

not only be replacing DOM elements in the browser but also

tearing down and rebuilding the trees of child components.

Fibers: Splitting up
Render
The actual React implementation used to look very similar to

what we’ve built so far, but with React 16 this has changed

dramatically with the introduction of Fibers. Fibers is a name

that React gives to discrete units of work during the render

process. And the React reconciliation algorithm was changed

to be based on small units of work instead of one large,

potentially long-running call to render. This means that React

is now able to process just part of the render phase, pause to

let the browser take care of other things, and resume again.

This is the underlying change that enables the experimental

Concurrent Mode as well as runs most hooks without block-

ing the render.

But even with such a large change, the underlying algorithms

that decide how andwhen to render components are the same.

And, when not running in Concurrent Mode, the effect is still

the same, as React still does the render phase in one block. So,

using a simplified interpretation that doesn’t include all the

complexities of breaking up the process into chunks enables

us to see more clearly how the process works as a whole. At

Fibers: Splitting up Render 27

this point, bottlenecks are much more likely to occur from the

underlying algorithms and not from the Fibers specific details.

Putting it all together
Now that we’ve explored how React renders your compo-

nents, it’s time to finally create some components and use

them!

const SayNow = ({ dateTime }) => {
return ['h1', {}, [`It is: ${dateTime}`]];

};

const App = () => {
return ['div', { 'className': 'header' },

[SayNow({ dateTime: new Date() }),
['input',
{ 'type': 'submit', 'disabled': 'disabled' },
[]]

]
];

}

render(createElement(App()),
document.getElementById('root'));

We are creating two components that output JSM, as we de-

fined it earlier. We create one component prop for the SayNow

component: dateTime. It gets passed from the App component.

The SayNow component prints out the DateTime passed in to it.

You might notice that we are passing props the same way one

does in the real React, and it just works!

The next step is to call render multiple times.

Putting it all together 29

setInterval(() =>
render(createElement(App()),

document.getElementById('root')),
1000);

If you run the code above you’ll see the DateTime display

being updated every second. And if you watch in your dev

tools, or if you profile the run, you’ll see that the only part of

the DOM that gets updated or replaced is the part that changes

(aside from the DOM props). We now have a working version

of our own React.

This implementation is designed for teaching

purposes and has some known bugs, like always

updating the DOM props, along with other issues.

Fundamentally, it functions the same as React,

but if you want to use it in a more production-like

setting, it would take a lot more development.

Conclusion
Of course our version of React elides over many details that

React must contend with, like starting a re-render fromwhere

state changes and event handlers. To build high-performance

React applications, however, the most important piece to un-

derstand is how and when React renders components, which

is what we have learned in creating our own mini version of

React.

At this point, you should now have an understanding of how

React works. You should now understand why using a good

key is so critical, what it actually means to have React render

a tree of components, and how React chooses when to replace

a node or re-use one. If your React application is performing

poorly you can think about which part of the algorithm or

heuristics might be the issue.

Now, there is a lot more to explore. Like, how do you track

down the cause of a performance bottleneck? Or, how do

you use the React APIs in a performant way? These types of

questions should be easier to track down and understand with

the foundations we covered. So I hope this is just the start of

your high-performance React journey.

	Table of Contents
	Preface
	Acknowledgments
	Introduction
	Components of React
	Markup in JavaScript: JSX
	Getting Ready to Render with createElement
	Render: Putting Elements on the Screen
	Reconciliation, or How React Diffs
	Fibers: Splitting up Render
	Putting it all together
	Conclusion

